NASA-CR-203072
NASA-IVV-96-05%

NASA/WVU Software IV & V Facility WV1-SRL-96-003

WVU-5CS-TR-96-12

Software Research Laboratory CERC-TR-RN-96-007
Technical Report Series Ry
St S

(7]
~4

Experience Report: The Use of Funciienal Flows ic Provide
i

by Edward A, Addy and Lynn J. Sinos

National Aeronautics and Space Administration

West Virginia University

According to the terms of Cooperative Agreement #NCCW-0040,
the following approval is granted for distribution of this technical
report outside the NASA/WVU Software Research Laboratory

John R. Callahan Date
r, Software Engineering WVU Principal Investigator

Experience Report: The Use of Functional Flows in IV&V

Edward A. Addy
NASA/WVU Software Research Laboratory
100 University Drive
Fairmont, WV 26554
eaddy @ wvu.edu

ABSTRACT

One of the characteristics of Independent Verification
and Validation (IV&V) that help make it an effective
systems engineering technique is the fresh perspective
it brings to the software development effort. This
fresh perspective can be enhanced if the IV&V tasks
are organized to cut across the work breakdown
structure of the software development tasks. This
paper describes an IV&V technique that uses
functional flow descriptions as a basis for IV&V
analysis. The functional flows generally pass through
multiple software modules, where the module is the
basic unit of responsibility for the development team.
The use of functional flows as a basis for IV&V
analysis allows the IV&V team to have a different
perspective from that of the development team. This
method can also be used to determine the critical
areas of the software and to focus the IV&V effort
toward these crtical areas. The method further
provides a framework for interaction for the IV&V
analysts who have responsibilities in different areas
of the software.

KEY WORDS

functional flow, perspective, IV&V, nuclear safety,
software accreditation, software engineering, software
safety, validation, verification

INTRODUCTION

The objective of an IV&YV effort is to develop an
independent assessment of the software quality and to
determine if the software satisfies critical systems
requiremcmsm. In an effort to meet this objective,

Lynn J. Simms

Logicon RDA

P.O. Box 1420
Dahlgren, VA 22448
Istmms @logicon.com

IV&V projects often seek to analyze the software
using methods, tools, and processes that are
complementary to but distinct from those used by the
developer. The complementary viewpoints utilized
by IV&YV include efforts to determine conditions that
might not have been tested by the developing
organization, including boundary constraints, off-
nominal conditions, error paths, and user scenarios.
These viewpoints enable the IV&V team to have a
different perspective of the software from that of the
development team.

One method to provide a different perspective is to
organize the analysis effort so that an IV&YV analysis
area involves software that cuts across the basic units
constructed by the developer. Since IV&V focuses
on critical system requirements, the cuts focus on the
software that performs functions that are critical to
the operation of the system. This experience report
describes how functional flows are used to provide a
structure for IV&V analysis. It describes the methods
used and the additional advantages gained by the
IV&V team through the use of functional flows.

ISNSA ENVIRONMENT

This work is performed as part of the Independent
Software Nuclear Safety Analysis (ISNSA) of the
Tomahawk Weapon System (TWS). The TWS and
other weapon systems that are capable of using
nuclear weapons are developed in accordance with
the United States Department of Defense (DoD)
standards for nuclear safety, Safety Studies and
Reviews of Nuclear Weapons, DoD Directive
3150.2°. The Navy implements the DoD nuclear
safety requirements within the Tomahawk system
through the Tomahawk Nuclear Safety and
Certification Program, PDA-14INST 8020.1A".

The work described in this paper was performed while both authors were employed by Logicon, Inc. The work was performed
under contract number NOOO19-90-C-0050. Support for writing the paper was provided by NASA under contract number

NCCW-0040.

ISNSA is part of this program, and is performed to
ensure the software does not cause or contribute to a
violation of nuclear safety standards.

The focus of ISNSA is nuclear safety, so the analysis
is not focused on general safety or on performance
issues. However, ISNSA uses many of the same
techniques and methods used by the software safety
community and by general IV&V®’. In addition,
ISNSA is the only activity within the TWS
development process that provides an independent
assessment of the software. ISNSA finds and
documents many problems related to general safety
and to performance as a collateral result of analyzing
the software for nuclear safety.

The Tomahawk Nuclear Safety and Certification
Program identifies a set of system actions that must
be controlled properly in order to ensure the weapon
system is in conformance with DoD nuclear safety
standards’. These critical actions are implemented
and controlled within the system through some
combination of hardware, software, or administrative
components. The portions of the system that
implement and contro! the critical actions are termed
“cntical factors.”

The ISNSA team has the responsibility to identify the
software that is a part of any cntical factor. The
software functions that are included in critical factors
are termed ‘‘critical functions”, and this critical
software receives priority for analysis. A critical
factor may be implemented across multiple software
modules, tasks, and computers.

The system considered by the ISNSA team consists of
three major components: the Weapon Control System
(WCS), the Vertical Launch System (VLS), and the
missile. This report deals with ISNSA performed on
the TWS system and on the WCS subsystem for
several major versions. The overall TWS system
ISNSA deals with a high-level view of the system,
focusing on external interfaces and the interfaces
between the various hardware and software
components of the weapon system. The WCS
subsystem ISNSA goes to a more detailed level,
extending to the code implementation.

The WCS subsystem software is developed in
conformance to the Defense System Software
Development standard, DOD-STD-2167A°, and
consists of FORTRAN and Assembly code in a real-
time, interrupt-driven system. The software has a
basic hierarchical structure, with multiple tasks. Each
task issues a sequence of calls to subroutines and

Functional Flows in [IV&V

functions, and executes on a separate thread. The
tasks communicate through messages and shared
memory locations, and have priority assignments that
determine scheduling for execution. The individual
tasks in the code often have a correspondence to
particular sections within the program specification
document.

The ISNSA team analyzing the WCS subsystem is
organized according to the structure of the software.
Each analyst is assigned particular sections of the
program specification, and is expected to follow that
area of the software through requirements, design,
implementation, and test phases of development. The
developing organization is also organized along this
same basic hierarchical structure.

FUNCTIONAL FLOWS

Functional flows are a means of expressing software
requirements, design or implementation in a diagram
form. A function flow is a block diagram that depicts
the relationships between the system components that
are required to accomplish a particular function,
including inputs, outputs, constraints, and control
flow.® The diagrams are used by analysts to search
for ambiguities, inconsistencies, incompleteness, and
areas of potential weakness.

The ISNSA approach combines functional flow block
diagrams with the Tomahawk nuclear safety critical
factors. The ISNSA team prepares functional flow
diagrams that depict the flow of data and control in
the software necessary to perform each of the critical
actions’. The resulting functional flows are termed
Critical Factor Flow Diagrams (CFFDs). The CFFDs
are designed to identify and analyze the system
elements and interdependencies of system elements
that are necessary to the realization of the critical
factor being diagrammed.

CFFDs are created at two levels: the TWS system
level and the WCS subsystem level. These two types
of CFFDs are constructed in formats created by the
ISNSA team. TWS system CFFDs are constructed in
a format most suitable for representing the
relationships between subsystem-level software and
hardware components. WCS subsystem CFFDs are
constructed in a format most suitable for representing
the relationships between WCS software components
and between WCS software components and software
and hardware components in other subsystems. The
WCS appears as one subsystem in the system CFFDs.

Notes within the WCS area of the system CFFDs
indicate corresponding sections of WCS subsystem
CFFDs. The critical factor being represented is used
in the naming convention for both TWS and WCS
CFFDs, so flows related to the same critical factor
can also be identified in this manner. However, the
portions of the WCS subsystem CFFDs that do not
involve elements from other subsystems do not
appear in system CFFDs. Also, while all critical
factors must be addressed at the system level, not all
critical factors involve the WCS subsystem.

Special symbol formats used in the system diagrams
include rectangles for digital messages across system
component interfaces and squares for hardware
devices and monitors. The subsystem CFFDs use
rectangles to represent interfaces to other subsystems
within the weapon system. Symbols used by both the
system and subsystem CFFDs include AND gates and
OR gates, and diamonds for decision boxes that alter
the path to be taken for different data values. Lines in
both diagrams represent control flow, message flow,
or signal flow as appropriate. Figure 1 shows a
sample System CFFD, and Figures 2a-2d contain a
sample Subsystem CFFD, all taken from the ISNSA
work. Figure 3 indicates the meanings of the various
symbols used in the functional flows.

A bnef description of the sample CFFDs is given
below, in order to provide a general understanding of
the flows being diagrammed. Many details, such as
the message information and values of the variables,
are not described since this paper addresses the
concept of the CFFDs rather than the particulars of
the TWS implementation.

The system level functional flows created by the
ISNSA team are generated from requirements and
interface control documents, while the subsystem
level CFFDs are based on source code
implementation. The symbols and formats are chosen
as appropriate for the level of detail and the
relationships within the respective functional flows.
These examples should not preclude the use of
functional flows at other levels of system
development, nor should they prescribe the use of
these symbols and formats for all functional flows.

System CFFDs

TWS system CFFDs depict the functional processing
of the cntical factors by showing actions and

Functional Flows in IV&YV

interactions of the various subsystems. The message
flows, device control and device status are shown in
these diagrams, as well as the Boolean combination
of events necessary to cause actions. The system
CFFDs visually divide the flow of messages and
status data across distinct sections of the diagram.
Each section represents a subsystem or hardware
component, including WCS subsystern components,
launch system components and missile components.

Figure 1 depicts the flow for the processing to request
missile status information. The message originates in
the WCS subsystem, and is passed through two
subsystems of the VLS to reach the missile. The flow
of return information and the processing involved is
also shown in the diagram.

The information in the WCS subsystem section of the
system CFFD shows the particular subsystem CFFD
number that sends or receives the data from that
system CFFD. Critical timing requirements are noted
where flow of information has to occur within a
particular window of time.

Subsystem CFFDs

The WCS subsystem CFFDs depict the flow of data
and control through the hierarchical structure of the
software. Each WCS CFFD is broken into layers of
subflows, where the lowest level subflow represents
the path and actions taken during one pass of a task.
Each subflow of a CFFD culminates in a variable(s)
being set or a message being transmitted that is a step
toward the accomplishment of the critical action
associated with the critical factor. Variables being set
to the values indicated by the subflow appear as input
conditions in other subflows, in the same or other
CFFDs. Each page of the subflow shows the
routines, calling structure, and variables used within a
single task

The Boolean events leading into the AND gate of a
routine wdentify a specific path in the routine that is
executed in this critical factor. This path may also
appear in other pages of a CFFD or in other CFFDs.
Other paths in a routine often occur in the same or
other CFFDs.

Figures 2a-2d show the CFFD for the processing to
grant permission to fire for a plan, which is a specific
step in the launch sequence. The Permission To Fire
CFFD has only one layer of subflows. Granting

permission to fire involves the four basic steps listed
below.

1. determining that the plan has advanced to the
proper state to place an operator prompt on a
queue

displaying the prompt

recognizing that the operator has responded
properly to the prompt

4. setting the state of the plan to indicate that

permission has been granted.

bt o

This processing requires action in four major task
threads, which results in the CFFD having four pages.
Figure 2a shows the processing within Task ELSST
for the Request Permission to Fire Prompt to be
placed on the prompt queue. Figure 2b shows the
task which acts upon the operator request to display
the prompt. Figure 2c shows the display processing
within the third task when the operator turns the
Permission to Fire Key. Figure 2d shows the final
processing within a subsequent pass of Task ELSST
to set the state of the subsystem to indicate that
permission has been granted for the plan.

The Boolean combination of the variables evaluated
in the critical path are shown on the flow, as well as
the values to which critical variables are set. Each
page results in the setting of a critical vanable or the
output of a message, and this result is used to name
the individual pages of the subflow. The code
variable name, the value assigned or being evaluated,
and a description of the condition holding when the
variable assumes that value are all listed on the
subflow for both assignments and evaluations. Great
pains are taken to ensure consistency in the
descriptions across all the CFFDs, so that identical
conditions are described using the same phrasing.
This allows text searches to be used to locate areas of
interest.

CONSTRUCTION PROCESS AND USE

Some CFFDs exist for the previous version of the
system and the subsystem. The system diagrams and
some subsystem diagrams are assigned to analysts
already experienced in those portions of the ISNSA.
These analysts are able to use the previous diagrams
as baselines and update them for the differences that
occurred. These changes are known to these analysts
from the results of difference programs run on the
subsystem code, or from differences in the
Performance Specifications or Interface documents of

Functional Flows in IV&V

system components. The efforts of these analysts are
focused on updates first, and then on studying the
flows for any subtle impacts the changes might have
caused. The CFFDs become meaningful, visual tools
for determining the impact of change.

The ISNSA group also has several new analysts.
These analysts are not able to use the existing CFFDs
as baselines because they do not yet know the code
deeply enough to detect subtle problems that changes
might cause. The new analysts instead start
constructing the CFFDs from the beginning. These
analysts study the assigned code, create a basic
CFFD, and then compare their diagram to the
baseline CFFDs and known difference listings as the
experienced analysts do. Creating completely new
CFFDs when old CFFDs already exist may seem to
be duplicative work. However, the analysts find that
this one-time investment serves them well in better
understanding the flows of the program and in
helping them to detect the more subtle errors. The
actual time spent in this integrated process is
comparable to the sum of a "pure code study phase”
plus a "pure update CFFD" phase.

The TWS CFFDs are created from information in
interface control documents and from operational
flow diagrams in the high-level system specifications.
The WCS CFFDs are based on code analysis and the
use of a flow chart generator. Each Boolean
combination of vanables feeding into a module AND
gate represents a particular path through the
module(s). The represented path terminates in the
call to the next module or in the statements that result
in the output indicated by the CFFD.

The analysts use the CFFDs not only to verify the
basic processing of each critical factor, but also to
investigate error processing and off-nominal cases.
By examining each variable involved in the CFFD,
the analyst can consider the possibility of conditions
that could affect the value of that variable. The
CFFDs also present a visual representation of the
processing by which the analyst can consider the
completeness of each flow, and if all cases within
each situation are handled by the software.

The CFFDs assist in communicating about the
processing of the critical factors to other ISNSA
analysts and to ISNSA management. The CFFDs are
used in determining the impact of mistakes in one
area of the software upon other cntical processing.
The CFFDs also serve as the basis for formal
inspections by the ISNSA team.

In addition to aiding the analysis of each area by the
analyst assigned responsibility to that area,
construction of the CFFDs provides a framework for
interaction. The analysts have to cooperate with each
other to develop a set of CFFDs that are complete and
consistent. Many of the CFFDs involve multiple
tasks that may be assigned to different analysts, and
these analysts have to work together to construct the
complete CFFD. This cooperation provides a basis
for the analysts to learn about program areas outside
their assigned responsibility.

COMPARISON WITH OTHER METHODS

Functional flows have aspects that are common with
other analysis methods used in software safety,
including fault trees, event trees, and failure mode
and effects analysis. Functional flows also share
some commonalties with testing approaches such as
operational profiles and user scenarios. This section
discusses the similarities, differences, and
relationships between functional flows and these
other methods.

Fault trees are frequently used for system safety
analysis, and show the combination of events that
could cause or contribute to the occurrence of an
undesirable state. Fault trees are depicted using a tree
structure with AND and OR nodes, and usually
contain hardware conditions, software conditions and
human interactions. A fault tree is the logical
representation of the relationship of primary events
that lead to a specified undesirable event. The
construction of the fault tree is top-down, in that the
undesirable event is the root of the tree and the
logical combination of subevents are used to map out
the tree until the basic initiating events are reached.

Event trees appear very similar to fault trees, and may
use the same representations. However, event trees
are used to identify the effects of an event instead of
the causes. Rather than starting from a particular
system event and working backwards to the causes,
an event tree traces a primary event forward in order
to determine the consequences of the event. Event
tree analysis is inductive as opposed to the deductive
fault tree analysis®.

Failure Mode Effects Analysis (FMEA) is an
inductive method used to systematically consider the
effects of all failure modes. The system is
decomposed into its component parts, each of which
has known or anticipated failure modes. Each failure

Functional Flows in IV&Y

mode is analyzed, with an examination of the cause,
effect, severity, probability and prevention or
mitigation of each failure mode.

Fault tree analysis, event tree analysis and FMEA are
all methods of software safety analvsis, as is
functional flow analysis. However, due to its focus
on functional processing rather than strictly on the
cause or effect of a fault, functional flows can be
extended beyond software safety into the more
general area of software assurance . The derivation
of the CFFDs tends to include both top-down and
bottom-up techniques; the critical system action
accomplished by the critical factor is the top of the
functional flow, but the functional flow is generated
by examining the processing of the varous software
components. While event trees have a sendency to
expand rapidly as combinations of events cause
different effects, the critical factor serves to constrain
the scope of the functional flow.

Fault trees and event trees are both used to show
system states or conditions that are the cause or effect
of a particular system state. The emphasis of fault
trees and event trees is on determining the states that
can occur. Functional flows emphasize the process of
achieving various states of the system, showing
alternate execution paths and control flows that result
in the same state. This additional information is
useful if the analysis is being conducted to provide
assurance that the software is performing correctly
and not just to determine and avoid fault conditions.

Functional flows are not directly related to FMEA
tables, but could prove useful in the analysis of
failure modes. Functional flows provide insights into
relationships between software components that could
assist in determining the causes and effects of a given
fault mode. Since the functional flows are
constructed for critical processing, this would also
assist in determining the severity of a particular fault.

BENEFITS

The ISNSA effort gains several benefits from the use
of functional flows as a basis for analysis. These
benefits are both technical and orgamizational in
nature, and are described in the paragraphs below.

1) Perspective

A stated objective in using the CFFDs as a basis for
IV&V analysis is to provide the analysts a

perspective that differs from the perspective of the
developer. The perspective provided by the CFFDs
allows the ISNSA analysts to consider situations and
abnormal conditions that are not easily seen during
the construction of the software. An example of this
is the discovery of a path in which a single variable
was responsible for indicating that a critical factor
had been completed, thus allowing the next critical
factor to begin. This violated the nuclear safety
constraint that no single fault be allowed to initiate a
critical factor.

The perspective provided by the CFFDs is not simply
different from that of the developer, but is useful to
the IV&V analysts in understanding the software.
The CFFDs give the analysts insight into the internal
functioning of a module, into the overall flow, and in
particular to interfaces between modules. In addition,
this insight into the flow of the program is from an
operator's standpoint (closer to the critical factors)
rather than from a pure hierarchical (code study) or
requirements based (specification study) view.

2) High-Risk Focus

ISNSA attempts to focus its efforts on that portion of
the software that deals directly with the control of
nuclear weapons. (The ISNSA team also recognizes
that seemingly unrelated sections of the software can
have an impact on nuclear safety, and that some
minimal examination is necessary for all software in
the system’.) The CFFDs provide a natural structure
for giving priornity to the software that is involved
with the cnitical factors and is therefore most directly
related to nuclear safety.

Although most systems do not have a predetermined
set of “critical factors,” many systems do have a set of
actions that are critical to the proper operation of the
system. The system components that implement and
control those actions serve as the critical factors for
that system, and the software components involved in
those critical factors are the critical functions for that
system. This concept can be applied not only to
safety applications outside of nuclear weapon control
systems, but to non-safety applications as well.?

3) Test Cases

Each functional flow depicts one or more operational
scenanos for the system. These scenarios serve as a
basis for writing test cases dealing with critical
processing. Since many of the safety requirements
also deal with specific critical factors, the test cases
are appropriate for ISNSA. Having the flows in a
graphical format aiso allows the analysts to perform

Functional Flows in IV&V

pen and paper simulations of the processing using a
range of inputs. The ability to consider a range of
inputs is also useful in determining the exact values to
be used as inputs for testing, so that extremes and
problematic inputs can be used.

4) Cross-Training

The primary assignment given to each analyst
generally leads to the analyst being responsible for a
software module that consists of one or more tasks
and the calling structure beneath the tasks. The WCS
subsystem CFFDs provide a forum for the analysts to
consider and discuss interactions between the
modules. This collaboration allows each analyst to
learn about the structure and function of software
outside their pnmary area of responsibility, and to so
gain a better understanding of the program as a
whole. This whole-program view, linked to a
manageable amount of analyst responsibility, allows
analysts to envision problems that could not be seen
when considering only a portion of the software. One
example of this was a variable set in one section of
the software after verification that the proper
conditions were satisfied, but then changed in another
section without reverification to ensure that the new
setting met all required conditions.

CONCLUSION

The use of CFFDs proved valuable as one of the
methods used during ISNSA. By following a thread
through multiple modules, this technique allowed the
analysts to consider situvations and combinations of
events that would not normally be considered during
the development of the software. This method was
one of several used in ISNSA to focus the analysis on
areas of high-criticality. In addition, the CFFDs
provided a structure by which the analysts could leamn
about and discuss interactions and interfaces with
software outside their immediate area of
responsibility.

Although this method was used specifically within
ISNSA, functional flows could be applied to both
other areas of software safety analysis and to software
assurance in general. The functional flows provide a
framework for assurance activities to focus on the
areas of software that perform activities important to
the system user.

ACRONYMS

CFFD Critical Factor Flow Diagram
DoD Department of Defense
FMEA Failure Mode Effects Analysis

ISNSA Independent Software Nuclear Safety
Analysis

V&V Independent Verification and Validation

TWS Tomahawk Weapon System
VLS Vertical Launch System
WCS Weapon Control System
REFERENCES

1. Addy, Edward, "A Case Study in Isolation of
Safety Critical Software™, Proceedings of the
Conference on Computer Assurance 1991, ACM
Press, June 1991.

2. Addy, Edward, “Methodology of Independent
Software Nuclear Safety Analysis”, Proceedings of
the Fifth International Symposium on Software
Reliability Engineering, IEEE Computer Society
Press, November 1994.

3. DoD, Defense System Software Development,
DOD-STD-2167A.

4. DoD, Safety Studies and Reviews of Nuclear
Weapons, DoD Directive 3150.2, 1984.

5. Logicon, Inc. for Cruise Missiles Project and
Unmanned Aerial Vehicles Joint Project,
Washington, DC, Sea Launched Cruise Missile,
TOMAHAWK Weapon System MK 37, Independent
Nuclear Safety Analysis, Critical Function Flow
Diagrams, for Post Block 111, LS1S940012-CMV127,
December 1994.

6. Makowsky, Lawrence C., A Guide to Independent
Verification and Validation of Computer Software,
USA-BRDEC-TR//2516, US Army Belvoir RD&E
Center, June 1992,

7. Naval Air Systems Command, Tomahawk Nuclear

Safety and Certification Program, PDA-14INST
8020.1A, 1989.

Functional Flows in I[IV&V

8. Place, Patrick R. H., and Kang, Kyo C., Safety-
Critical Software: Status Report and Annotated
Bibliography, Technical Report CMU/SEI-92-TR-S,
ECS-TR-93-182, Software Engineering Institute,
Carnegie Melloa University, June 1993.

9. Wallace, Delores R., and Fujii, Roger, Software
Verification and Validation: Its Role in Computer
Assurance and Its Relationship with Software Project
Management Standards, NIST Special Publication
500-165, National Instimte of Standards and
Technology, September 1989.

10. Wallace, Delores R., and Fujii, Roger U.,
“Software Verification and Validation: An

Overview,” IEEE Sofiware, May 1989, pp. 10- 17.

8 AP AL Ul sM0[4 [BUONIUNY

1Jo | 33ed ‘6-€ QJ1AD WALSAS :A44D WALLSAS ATINVYS - [2and1yg

‘Younwy un ainugw 43d U0
pauuopad s1 pus 3191dwos peoj UoISSIW JO SPUCIIS 10¢-LIN 19§
§ UIYIM D[YU]IBAR S | | WNKYIIYD) BIEQ UOISSIIA 'C asuodsay Jduepinn

‘youne-01-JuAu) 1958 wawudiy SMES N SsSIN

Jeuruu] Jaye utede pauuoyrad s11s9) ay
‘pueuiwo)) weiFoiday ANvUIULID] 1I1JE SPUODIS asuodsay >
9 UIYIIM J[QE[IBAR SI][JWRILIY IISSIN 351U ‘T swn___mmﬁ %h_mmewi
‘youne| [nun Anurw 1ad ssuo paunopad - €] » assIN
pue puewwo)) weioiday NeuruLIS] J93Je SPUOIIS
9 UIIM J]qe[IBAR JJB S]] WNSIYD) WUAD1JJ0)
uoneiqife] pue ‘M/H SOWD “4andwo)’| 1sa1oN 1£-al
smels
SLIsSIN
a8uey) snvig 8-¢ Q440D
anunuod smeig 1sanbay 1S1-LIN sanboy wo
184S woy
ON AIssIN ON no1 SIEIS SN "@ s d
SoK EY 4 > STIA Jo wassqng OIS
1
p31BUBIS3J SOM ST1A Jo washsqng 17
Sy-4d
15onbay dI 1130 PHEA
waskg jonuo) uodes SOMm smels PO PI[EA
[2dXL Fessajy plieA
wAsAS Youney [edIA STA SIS LOTPNPIEA - wnsyaay) piieA

1 d4 Jouanbag uj
49 18397

oLy sBessoy #- LW _
10usnbsg youne7 DIST
nu jonuoe) youneg no1

ueq induj #-dl <
uonoung [BWAXY #- A9 06Z-LIN 9suodsay Awm.w M,mm.wvcmwwwﬂﬁ.m
189-ur-ing Lid ST 3N 1sanbay smeig ayissipyy
aisn SWANOYDV SOM

JLVLS ATISSIN HOLINOW

6 A A] Ul smol, feuonounyg

v30 I ADVA ‘L-v Q44D SOM :AAID IWALSASINS ATINVS - 87 34n31g

(11 =1818719)

(1 = 41dUd1dD) 138 lotestpu] 1dwoly a1 o1 uoisstuudg 1sanbay - () pasonbay autf 03 uorssiuLdg

s1 Jogeoipu] Jouanbeg youne]

OILLLLLT =" HLNV [1D) 19§ 10N 01 19§ 3p0)) uonezuoyny -

(11 = [STISTO) pasanbay 241 0) UOISSIULII] 0} 19§ JOTBIpU] Iduanbag youney - 01 =1S1S1D)
(0 =: 4LddOD) PoILBID 10N 51 N 01 voIssuLdg - (£) pasdug 9po) UL

§1JOTDIpU] 20uanbag Youne]
(SYYV.LNCA ‘ANTdD) Spiop Jo JaquinN -

(ANNAVE '$913) (F9[#) UAY 311§ 0] UOISSTULID] PUSUIWOITY - (0 < O01dd3D) s1sixyg weid
(WNN.LWJE '613) (61#) 1dutoud ot 01 uotssiuudg wonboy -
(XdLLA4dA ‘alda) xspuf weld - (T=dAld13D)
(JYVLUNJE ‘d1d¥d 1dD) Aeuy Joestpu] 1duiold it O) uoissiuLdg 1sonbay - (7) _ uelq Jeadny e st uejd
(a1dd ‘qidd) ¥apuy wed - (1) (19 => XdOIdD)
ue| g uonupt[eA 10 ‘KIOJUdAU|
ISNON ‘$SSB[O9(] © 10U St ueld
(1 < 41ddd1dD) (1 < 41dud1d0)
19§ 10N St JolEoIpu] 19§ 10N St JOTEOpU] , (€ > $4d39)
wworg a1t 0) Wdwoug g 0 — Qi1 PIOH 10N S! SElS Ueld
uoIsSTULIR] 15anbay uolsSIULRg 159nbo
d d 1o (v © Sdd3)
) [eouR)) 10U St SMIAG teld
LATVN
LINAdN © EAPE.C SS14
ano -

ur (614) vds <
dwoyy @@ (1) MDY
g o) 1S5 - ysel

UOISSTUWLIS]
1sanbay

ananQ) uf (6T1#) 1dwoid a1 0], UOISSTULID] Isanbay
Y14 OL NOISSINJIAd

01

AP ALl Ul sm0[[euondung

P JO € ADVA ‘L-v A44D SOM :@AdD WALSASENS ATJNVS - 37 3undyy

snand 1dworgd wolg psacwoy (61 4)
1dwosd 3114 0) UCISSIWIAJ PUSWWOIIY - (1)

(r=(Z'"HWWNODAQINdDISSD)
uonepiv A Buuung pafuey)y
jou se1dwoid uriaquny ue|g

iNON pakerdsiq st (614) 1dwouy
2114 0) UOIN¥IWII PUIWWOIIY
Q HWIWAa
(1 = 41dd0D) [JOU4NIO
’ Mddda LIVMYD
polunip LNdNIO

34 O} UoIss{UIIag

I|—II| ANDY 289 |

30|JI31U] [BUIWIA]
Aeydwi g 1oiviad

Aoy g
(LITXUEENE
Auidsiq 0], uolssiwiag
1nmiadQ suin 101819dQ

pojueIn 211, 01 UOISSIWId]
Aoy 2114 o] uworssiwmiag suin] 10jeiadQ

HYId OL NOISSINYAd

b 30T OV ‘L-v 44D SOM :AdID WALSASANS ATINVS - q7 2an314

pakuids1Qg
(61#)1dwoury
Q114 0} uUoIsSSTWIdg
puUdIwIWoOdI Yy

dNavo

(61#)1dwouy

3114 01 uolssiwiIag
PUd W WOy Ayl 51 anand
1dwosd utidwosgd 1xaN

[eurwd |
Kerdsiqg

10e12dQ

(61#4)1dwoid 3ltg 0}
UOISSIWIg PUS W WO Y
B JON st pakeidsiq
Surag Apuanin)rdwosy

snand 1dwoid woly
pasouway st pakejdsiqg

Juiag Apuanin)dwosd
(K18s$323N J1)

uonng 2ouonbagidwosyd

sassaid 10je12dQ DO

pakerdsig (61#) 1dwoig 2114 o uolsstwiag 1sanbay
JYId OL NOISSIINYddd

11

AR AL U $MOL [eUONOUNg

v30 v OV ‘Lv AJ4D SOM :AAAD WALSASANS A TdNVS - PT 2andiy

(0 = d1dYUd 1dD) p24ea[) 101Bd1pU]
1duwiolg 2114 01 uolssiwiag 1sanbay

(MTSTSTI = HLNVIAD) uonezuoyniny aii4 o)
uoIssiwidg parueln) sey J0esedg

(0= 4Ld4d09D)
pauRIN 10N 1 1] O) UOISSIWIDG

- (1)

$SAJON

(1 =41d¥d1dD) 138
s1 101e01pYf 3dwold 3114
0) uotsstwiag 1sanbay

(1 = 41dd0OD) pawuesn
SI 211 O] UoIsSIWIag

(n

447109
41434

(1 = 1S1S1D) parvesn 214

(11 =1§71S71D) paisanboy
A1 0} uolssiuIdg
s1 Jojed1puj aouanbag youne

(01=1S18°1D)
palajug 2po)) wieald

—<CE—

s1 JojedIpu] 2ouanbag youne]

(0 <> 071dddD) 5151X7 ueld

(Z=dAlLd13D)

uB[d JE3{ONN € S1 ueld

(v9 => XdO1dD)
ue[d UOHBPI[EA JO ‘KIOJUdAU]

SSB[09(] ® 10U S{ ue[d

(€ <> §4439)

2114 PIOH 1ON SI smwig ueld

(y <> 8ddao)
[30ur)) J0U 81 smvlg ueld

§S11d

(a1d3 ‘aida)
xapuj ueld

0] UOISSIWIA] 0} 13§
loyed1puj asuanbag younen

JAId OL NOISSINY4dd

LSS13 —2aAn0V yse],

PajuRIL) 2114 O UOISSIUII 0] }9§ J01edIpuU] 2douanbag youne]

[4! AR Al Ul SMO[] [BUOnOUN,

STOGINAS d44D - € 3n31y

"SQUIBU [qeLIeA [ENIOT PUE S)UEISUOD Julsn UONIPUOD uedjooq & Aq pamo|o} aseryd © Aq PaquIdSap are sjuawuSISse pue SUORIPUOD EIe(]

"S[[€9 2U1IN0IGNS 10J PAJSI| AIe sjuawnIIe [enjoe pue [BULIO ,

'sjuawudisse pue sy0yd ay3 Jurwiopad saNpow Ay SUIRIUOD S(J.D WASASqns ay ut 9188 NV YL |

wawudissy = sanienbau] uesjoog =< ‘=> ‘<> ‘> Anjenbg uesjoog =

eUNU] WIASAsqng a3essoy aJen) UOoISINA(]

I0)UO
aoepau] JoresadQ) 10 991ASQ] ATEMpIEH uopeNUNUOD O

¢ MO[] uoneuLojuy _— sjurensuo)) SUIWI], <eg—po aeD YO
¢ MOL] [onuo) - MO[UONJBUWLIOJU] <ef——— | 9D ANV Q
INALSASANS INHLSAS NOWIWOD

SNVIDVIA MOTA NOILONNA dHL NI ddSn STOIINAS

